
Analyzing Interaction Orderings with
Model Checking

Matthew B. Dwyer, Robby, Oksana Tkachuk
Kansas State University

Manhattan, KS 66506, USA
{dwyer,robby,oksana}@cis.ksu.edu

Willem Visser
RIACS, NASA Ames Research Center

Moffett Field, CA 94035, USA
wvisser@email.arc.nasa.gov

Abstract

Human-Computer Interaction (HCI) systems control an
ongoing interaction between end-users and computer-based
systems. For software-intensive systems, a Graphic User
Interface (GUI) is often employed for enhanced usability.
Traditional approaches to validation of GUI aspects in HCI
systems involve prototyping and live-subject testing. These
approaches are limited in their ability to cover the set of
possible human-computer interactions that a system may al-
low, since patterns of interaction may be long running and
have large numbers of alternatives.

In this paper, we propose a static analysis that is capa-
ble of reasoning about user-interaction properties of GUI
portions of HCI applications written in Java using modern
GUI Frameworks, such as SwingTM. Our approach con-
sists of partitioning an HCI application into three parts: the
Swing library, theGUI implementation, i.e., code that in-
teracts directly with Swing, and theunderlying application.
We develop models of each of these parts that preserves be-
havior relevant to interaction ordering. We describe how
these models are generated and how we have customized a
model checking framework to efficiently analyze their com-
bination.

1 Introduction

Modern software is becoming increasingly feature-rich
and integrated into mission critical processes. A Graphical
User Interface (GUI) serves to foster efficient and effective
Human-Computer Interaction (HCI) by : (a) depicting ap-
plication data in forms that allow humans to quickly and
clearly understand that data, and (b) by guiding and con-
trolling interaction by presenting only the set of allowable

actions that users may perform next based on the under-
lying application’s data state. Traditionally, GUI valida-
tion has involved prototyping a graphic user interface and
performing live-subject testing to assess both of these con-
cerns. Live-subject testing is clearly necessary, especially
in assessing usability and ergonomic aspects of GUIs, but
the potentially long-lived nature of the interactions between
users and system and the number of alternatives available to
a user at each step in an interaction make coverage testing
of the space of possible interaction orders infeasible.

In this paper, we present a static approach to analyzing
program behavior under all possible interaction orderings
enforced by a GUI system implemented in the Java Swing
framework. We discuss Swing in detail in Section 3, but it
is important to understand that it presents several challenges
for static analysis.

Swing is an object-oriented framework where win-
dows, widgets on a window (e.g., buttons, selections, text
entry boxes), the text and color associated with widgets
and windows, and numerous additional attributes are all
defined by instantiating framework classes. References
among those class instances define information about the
visibility, modality and enabledness of widgets that is cru-
cial to defining the evolving state of the user-interface in
response to user-initiated actions.

Swing is an event-driven framework that inverts and in-
ternalizes the applications control flow. Programmers de-
fine methods, calledevent-handlers, that respond to occur-
rences of user-initiated actions, calledevents, like the press-
ing of a button. Handler methods are bound to events by
making framework calls that record theevent-handlerre-
lation. The framework executes a cyclic thread which pro-
cesses each event in turn and invokes the associated handler-
methods.

The fact that object values and object referencing re-
lationships are used to define the structure and behavior
of a Swing GUI, means that traditional static analysis ap-
proaches that do not capture program data values precisely
are of limited use; a more precise, object-sensitive form of
analysis is needed. This observations led us to explore the
use of model checking as a means of reasoning about GUI
behavior in previous work [8]. In this paper, we applysoft-
ware model checkingapproaches [5, 16, 20] to automate and
scale the analysis of interaction orderings in Java GUIs to
realistic systems. Our approach consists of partitioning an
HCI application into three parts: the Swing framework, the
GUI implementation(i.e., the GUI setup and event-handler
code that interacts with Swing to configure the structure of
the GUI and to implement its control-logic), and theunder-
lying application(i.e., the code that is common to GUI and
command-line versions of an application). By decomposing

an application in this way we can target each part with a dif-
ferent technology for extracting a faithful and appropriately
precise model of its behavior. This is crucial since it is well-
known that cost of model checking can grow exponentially
with the size of the system under analysis. To enable ef-
ficient model checking of GUI interaction ordering related
behavior, we have developed techniques for efficiently ex-
ploring the large space of options available to the user at
each step in the interaction, for abstracting the data state of
the underlying application, and for exploiting the fact that
many GUIs are singly-threaded.

We use the Bandera Environment Generator (BEG) [18,
19] to perform precise inter-procedural side-effects analy-
sis of the Swing framework to understand what framework
classes and methods can influence event-handler execution;
the results of this analysis form an initial approximate be-
havioral model of each framework method that is subse-
quently refined manually. We also use BEG to automati-
cally generate safely approximating models of the under-
lying applications classes and methods. These application
models sacrifice precision for scalability by collapsing ap-
plication data to a small number of representative abstract
values. As discussed in Section 3, this abstraction does not
impede analysis since GUI implementations are not typi-
cally sensitive to specific application data values. Finally,
we use model extraction techniques from Bandera [5] to
generate finite-state models that capture the control-flow
constructs, local computation, and Swing and application
method calls of the GUI implementation. The resulting
combination of models safely captures event-related GUI
behavior while abstracting other aspects of the GUI, e.g.,
color, shape, size, and the underlying application. Further-
more, the model retains the structure of an event-driven
Swing system. We exploit that structure to minimize the
number of visible program states that are stored during anal-
ysis for GUIs with only a single event-dispatch thread. The
implementation of this optimization in our customizable
model checking framework, Bogor [16], required only mi-
nor modification, yet, as we show in Section 5, it can dra-
matically reduce the cost of analysis.

This paper makes several contributions, including (i)
presentation of a compositional approach to model con-
struction that exploits the structure of GUI applications,
(ii) description of a semi-automated method for generating
models of complex library frameworks, (iii) description of
approaches for customizing model checking algorithms to
exploit the semantics of GUI frameworks for state-space re-
duction, and (iv) preliminary evidence that the overall ap-
proach scales to treat features found in real Java Swing GUI
code. Finally, we believe that this work provides further
evidence of the need for flexible and customizable model
checking frameworks, such as Bogor, to target and exploit
properties of specific software domains in order to achieve
efficient and precise analysis.

The next Section gives an overview of our analysis ap-
proach and gives some background on our model checking
tools. Section 3 describes the Swing framework and our
model of framework behavior as it relates to the ordering of
user-interactions and the execution of event-handler code.
Section 4 gives an overview of the Bogor model checking
framework and discusses several optimizations that have
been developed to reduce the cost of analysis. We describe
the application of our method and tools to several Java GUIs
in Section 5 and assess the potential for scaling to larger
applications. Section 6 discusses related work and we con-
clude in Section 7.

2 Background and Overview

The field of software model checking has developed
rapidly over the past five years. Tools that can analyze
Java programs of up to ten-thousand lines of code with tens
of threads are now available [20]. The fundamental com-
plexity of this form of analysis, however, is inescapable.
Progress has been made by developing increasingly so-
phisticated techniques for identifying semantics preserving
state-space abstraction and reduction techniques that allow
for certain details of a systems behavior to be skipped dur-
ing analysis. In this section, we briefly describe two frame-
works for implementing forms of abstraction and reduction
for Java programs that form the basis of our analyses of
Swing GUI implementations.

Bandera Environment Generator (BEG) [18, 19] is a
framework for analyzing specifications and Java implemen-
tations and synthesizing safely approximating models of
their behavior. The most relevant aspects of BEG for this
paper are its alias and side-effects analysis. BEG analyzes
the influence of a part of a code base on specified program
classes or fields. One designates a collection of relevant
classes or fields, called theunit, and a collection of meth-
ods (or classes) to be analyzed. BEG calculates a summary
of the side-effects that each method may make on the unit;
note that the summary encodes the transitive effects of the
entire call-tree descending from the named method.

BEG uses a context-sensitive access-path based alias
analysis to drive the side-effects calculations and is able
to refine itsmay side-effects summaries usingmust and
path sensitiveside-effects information. These summaries
are reified as Java programs using special modeling primi-
tives that encode non-deterministic choice operations over
portions of the heap as a mechanism for representing sets
of objects. Thus, BEG can be viewed as calculating an
abstraction of a code base’s behavior relative to the unit.
In previous work, we used BEG in conjunction with the
Java PathFinder (JPF) model checker [20] to analyze sev-
eral large applications including a multi-thousand line air-

2

javax.swing
Library

Application
Underlying

State−based Model of
Possible User Actions

BEG Abstraction

Manual Refinement
 BEG +

GUI DisplayUser Actions

Implementation
GUI GUI

Implementation

Bogor Extension

Figure 1. Model Extraction Strategy

craft cockpit display simulation. For more information on
BEG seehttp://beg.projects.cis.ksu.edu .

Bogor [16] is an extensible and highly modular software
model checking framework designed to ease the develop-
ment of robust and efficient domain-specific model check-
ers for verification of dynamic and concurrent software. In
previous work, we showed that the cost of model checking
can be reduced significantly (i.e., by order of magnitudes)
by leveraging domain-specific information, e.g., domain-
specific abstractions [6], state-space structures [10], and ob-
ject access and locking disciplines [9].

In contrast to other model checkers such as Spin [12],
Bogor’s modeling language (BIR) provides high-level fea-
tures commonly found in modern programming languages
such as dynamic creation of objects and threads, dynamic
dispatch of methods, exception handling, etc. Furthermore,
BIR is extensible – it allows the introduction of new abstract
data types and abstract operations as first-class constructs of
the language. This is analogous to adding new native types
and native instructions to a core BIR virtual machine.

Another notable feature of Bogor is its modular archi-
tecture. It is designed with clean Application Programming
Interface (API) using well-known design patterns [11]. This
eases the incorporation of targeted algorithms to reduce the
cost of model checking. For more information on Bogor see
http://bogor.projects.cis.ksu.edu .

2.1 Our Approach

The left-side of Figure 1 illustrates the three-layer struc-
ture of a Swing application. The framework owns the main
execution thread, controls the rendering of display images,
and processes user inputs to produce events that are relevant
to the application. TheGUI implementationis comprised of
all of the application code thatdirectly manipulates Swing
types, for example, to configure the structure of the GUI
and to define and register event-handler methods. Theun-

derlying applicationis the remainder of the application that
is, by definition, not directly dependent on Swing types.

Our goal is to be able to reason about sequences of
user interactions that a GUI implementation allows; we call
theseinteraction orderings. Intuitively, the different layers
of a Swing application exert different degrees of influence
on the behavior of the overall program relative to interaction
orderings.

As discussed in the next Section, Swing allows the def-
inition of window objects that control the visibility and
enabledness of widgets through which a user may initi-
ate interaction. Swing’s event-handler invocation mecha-
nism also plays an important role in defining the top-level
control-flow among handler methods which can in turn in-
fluence the set of interactions that are presented to the user.
On the other hand Swing types provide an enormous vari-
ety of options for controlling the visual aspects of the GUI;
these details are not relevant for reasoning about interaction
orderings. Our approach is to develop a single model of
the Swing framework’s interaction ordering related behav-
ior. The fidelity of such a model with respect to the frame-
work’s implementation is critical if our analysis is to be use-
ful. Towards this end, we configure BEG to preserve infor-
mation about Swing’s interaction ordering-related types and
fields. This produces a summary of side-effects on interac-
tion ordering-related framework data for each method in the
Swing API. This sound, but approximate, model is used as
a starting point for the manual development of a more pre-
cise model. This model is reused across multiple analyses,
hence the cost of its construction can be amortized.

We use techniques developed in Bandera [5] to trans-
late a GUI implementations code directly into BIR, the in-
put language of Bogor. One concern in applying Bandera’s
translation is the potential for unbounded object creation,
but this does not happen in the GUI implementations we
have encountered. Large numbers of Swing objects are of-
ten created to define the structure of GUI, but these objects
are largely invariant subsequent to initialization. Event-
handler methods may create local data for performing cal-
culations, but most data does not escape those methods and
is garbage collected upon method return, and the data that
does escape, for example strings written to the GUI display,
are abstracted since we only preserve interaction ordering
and not the exact values involved in interactions.

BEG is applied to the underlying application to calcu-
late its effects on GUI implementation data. In our expe-
rience, these effects are minimal and the result is an ex-
tremely coarse abstraction of the application. This tends
not to cause problems since the event-handler’s behavior is
determined by explicitly testing return values from applica-
tion method calls and the control-flow of event-handlers is
modeled precisely.

Finally, the user is modeled as being able to select any
input action that is visible and enabled in a given state of

3

the GUI. The models described above define that state and a
Bogor extension, described in Section 4, is used to perform
a non-deterministic choice from those input actions.

Interaction Ordering Properties We focus in this paper
on the abstraction and analysis of GUI interaction ordering
properties and not on the properties themselves. In previ-
ous work, we explored a range of safety properties related
to human-computer interactions in GUI systems [8]. In that
work, we used computation tree logic [14] to express the
properties, but they could just as well be expressed using
pattern-based [7] regular expressions. For example, a prop-
erty such as “When an error message is displayed the only
available user action is acknowledgement via the ’ok’ but-
ton” could be checked by analyzing the system to ensure
that no executions match the regular expression

.; display[error]; ˆbutton[ok]]; .*

which encodes a violation of the property (i.e., that the dis-
play of anerror is followed by an action other than the
press of theok button). Bogor has an extension for check-
ing safety properties expressed as finite-state automata so
this is a natural fit in our analysis framework.

3 Modeling Event-Handling in SwingTM

A typical GUI application creates a number of windows
and widgets. As the user interacts with the application, the
number of windows and widgets available for interaction
changes. Figure 2 shows a simple Swing example. At the
state captured on the figure, the application displays four
windows: the main frame (left), the non-modal dialog (up-
per right) and two modal dialogs (lower right).

3.1 Modeling Components

The essential step in modeling GUI components is iden-
tifying their abstract state. Swing is a very large library
and rather then exhaustively describe the abstract state of
each component, we describe the rationale for abstracting
the components of our example.

A modaldialog is one that restricts the next user interac-
tion to the enabled actions on that dialog; all other actions
are disabled. We model such restriction by keeping track of
modality as part of abstract state of dialogs. We keep track
of all available windows in the system in two data struc-
tures: a set of windows that that do not restrict user inter-
actions (i.e., frames and non-modal dialogs) and a stack for
restrictive windows (i.e., modal dialogs). At each step, if
the second structure is not empty, the modal dialog on the
top of the stack represents the window a user may interact
with. If there are no modal dialogs open, then the user may
interact with any window from the first set. In Figure 2,

the set of non-restrictive windows contains the main frame
and the non-modal dialog; the stack of modal dialogs con-
tains the other two windows, with the message error dialog
on top. In this state, the user is restricted to using the error
message dialog.

Once a user chooses a window to work with, they are
then able to select from that window’s components that
are bothvisible and enabled. Invisible components and
their children are not drawn on the screen, for example, the
components of the left tab of the main frame of Figure 2.
Disabled components do not allow for user selection. We
model these aspects of components by including per widget
visibility and enabledness booleans.

At each step, the user may choose among the visible and
enabled children of a top-level window. While certain com-
ponents may not be displayed in a given state (and hence
reasonably consideredinvisible), we wish to consider a log-
ical notion of visibility defined as follows : a component
is visible if either it is visible on the display in the current
state or it can be made visible by selecting a series of visible
components starting in the current state. Thus, we consider
the set of all components that lie on a path which consists
of visible components to be logically visible. We keep track
of containment relationships, e.g., that the main frame con-
tains a group of two tab panels, label, and buttons at the
top in Figure 2. The group of tabs and radio buttons, in ad-
dition to containment, show selection: only one item at a
time may be selected. Selecting a new component deselects
the previously selected one. This is called a single selection
model and we encode that by consulting containment and
selection information when updating component states for
radio buttons.

In addition to components that the user can click on,
GUIs present components where the user may enter input
data, e.g., theQuiz dialog contains an input field where
the user may enter text. The actual value the user inputs on
such components is not explicitly stored as part of the ab-
stract state; operations that would operate on suchmissing
valuesmust assume that it could take on any legal value of
its type.

The abstract state of the right orMore Dialogs tab in
Figure 2 is defined by the following values:parent : tabs
selection group,visible, enabled, selected, andcontains :
{radio button group,Show It! button}.

3.2 Modeling Event-Handling

The abstract state of each GUI component is defined by
values of the fields we model; the abstract state of the en-
tire system is defined by the state of each constituent com-
ponent. When a user performs an action on a GUI com-
ponent, an event of corresponding type is fired and sent to
listeners subscribed to be notified of that event. The event-
handling mechanism in Swing applications is an example of

4

Figure 2. GUI Example with Modal and non-Modal Dialogs

publish-subscribe pattern. Our model of the event-dispatch
mechanism, which is sketched in Figure 3, is integrated with
the model of the user described in the previous section. A
window is selected for interaction by prioritizing modal di-
alogs and choosing any top-level window, or reachable sub-
window, if none exist. That window is analyzed to deter-
mine the visible and enabled components it contains and
one of those is selected. The registered handlers for that
component are then notified in turn. The key to this model
is the ability to express non-deterministic choice over col-
lections of heap allocated objects; primitives operations for
these are discussed in Section 4.

The GUI events can be divided into two categories:log-
ical events correspond to user actions that require interac-
tion with the underlying application or GUI control-logic,
whereaslow-level events indicate actions that are primar-
ily handled automatically by the default GUI framework,
e.g., listeners that highlight a component or display a tooltip
when a mouse is moved over it. We focus on logical
events and their handlers in this work, although the low-
level events can be treated using exactly the same mecha-
nisms.

3.3 Analysis-Guided Model Definition

In Java, an object can be described by the val-
ues of its fields. For example, an instance of
java.awt.Component defines values for over eighty
fields of various types (e.g.java.awt.Color back-
ground, int width). Capturing an actual state of Compo-
nent object by specifying values of all of its fields is very
expensive. Fortunately, for verification of interaction order-
ing behavior, we only need to record the values of fields
that relate to the logical state of the component and not its
look and feel. In the rest of this section, we describe the
process by which Swing framework methods are analyzed
and how we convert those analysis results into models that
can be submitted to Bogor. We focus on theComponent
hierarchy to make the discussion concrete.

public static void main(String[] args) {
JComponent container; ...
while (true) {

window = chooseTopWindow();
container = (JComponent) randomReachable(

"env.javax.swing.JComponent",
window, isVisible, isEnabled);

notifyListeners(container);
}

}
public static Window chooseTopWindow() {

Window window = null ;
Vector modalDialogs = SwingUtilities.getModalDialogs();
if (!modalDialogs.isEmpty())

window = (Dialog) modalDialogs.lastElement();
if (window == null) {

Vector topWindows = SwingUtilities.getTopWindows();
window = (Window) randomReachable("env.java.awt.Window",

topWindows);
}
return window;

}

Figure 3. Event-dispatch Model (excerpts)

All Swing components inherit their properties from
java.awt.Component , which declares boolean fields
visible and enabled . java.awt.Container is
a sub-type ofComponent that implements containment
properties through a fieldComponent[] component .
Modality is implemented by a boolean fieldmodal of
java.awt.Dialog . javax.swing.JComponent ,
a descendant ofjava.awt.Container , declares
EventListenerList listenerList , where listen-
ers of *Listener (e.g., MouseListener, ComponentListener)
type may register using add*Listener method. All Swing
components inherit this listener mechanism.

In addition to inherited features, Swing components
declare fields reflecting their specific features, e.g.,
tabs implemented byjavax.swing.JTabbedPane ,
which declaresVector pages to keep track of added
tabs andjavax.swing.SingleSelectionModel to
keep track of tab selection. Integer type fields can af-
fect the number of widgets created for a component
(e.g., int optionType in JPOptionPane defines

5

pub l i c c l a s s C o n t a i n e r ex tends Component{
Component [] component =new Component [0] ;
pub l i c Component add (Component comp){

addImpl (comp , nu l l , −1) ; re turn comp ;
}
p ro tec ted void addImpl (Component comp ,

Ob jec t c o n s t r a i n t s , i n t i ndex){
i f (ncomponents = = component . l e n g t h){

Component newcomponents [] =new Component [. .] ;
component = newcomponents ; . . .

}
i f (i ndex = = −1 | | i ndex = = ncomponents){

component [ncomponents + +] = comp ;
} e l s e {

component [i ndex] = comp ; ncomponents ++;
} . . .

}
}

/ / must s ide−e f f e c t s
t h i s . component [TOPINT] = param0 ;
/ / may s ide−e f f e c t s
t h i s . component =new Component [TOPINT] ;
t h i s . component [TOPINT]= chooseOb jec t (” Component ”) ;
. . .
pub l i c c l a s s C o n t a i n e r ex tends Component{

Component [] component ;
i n t l e n g t h = MAX SIZE ;
i n t s i z e = 0 ;
pub l i c Component add (Component param0){

component [s i z e] = param0 ;
s i z e ++;
re turn param0 ;

}
}

Figure 4. Example Swing Method Analysis and Modeling

how many buttons are displayed on the pane). Fortu-
nately, such fields have a predefined and small set of val-
ues (e.g.,optionType = YES_NO_OPTION produces
a pane with two buttons: yes and no).

We use side-effects analysis in BEG to guide the model-
ing of Swing components. Since we are interested in pre-
serving specific properties of Swing components, we define
a specialized side-effects analysis which calculates side-
effects to specific fields of Swing components, e.g., boolean
fields (visible, enabled, etc), fields that serve as containers
(arrays, Lists, etc) and eventListeners.

We illustrate this analysis on theadd method of
java.awt.Container class; Figure 4(left) shows ex-
cerpts of its Java implementation. We are interested in the
side-effects this method has on the fields, discussed above,
that are related to the abstract state defined in the previ-
ous section. Figure 4(right-top) shows the output of BEG
that encodes the results of side-effects analysis. BEG calcu-
lates that the method must side-effect the fieldcomponent
by assigning the parameter object to an element of the ar-
ray. Unfortunately, the Java code is complicated by vari-
ous checks on the method input and the state of the field
component . If the array is too small, the new array is
allocated, and the elements from the old array are copied
to the new array. It is hard to design static analyses to ac-
curately track such behavior, therefore, the analyses results
may be overly imprecise. However, the model-writer can
inspect the analysis results and decide whether to model the
behavior that causes the imprecision. In this case, we do
not wish to model the allocation of the new array since any
such error would be detected by simply executing the appli-
cation. Therefore, the final model, shown in Figure 4(right-
bottom), reflects only the must side-effects of the method.

Another advantage of using analysis results to guide or to
check the modeling process is the ability of the analysis to
identify the methods that do not have any side-effects on the
specified fields. A majority of methods in Swing only effect
the look and feel of a GUI and thus have no side-effects

on interaction order related data. Once methods with no
side-effects are identified, the model-writer can simply use
the analysis results to model the behavior of these methods
using empty stubs.

4 Customized Model Checking of Event-
Handling Implementations

In this section, we describe the modeling of GUI ap-
plications in Bogor’s input language, BIR, and the adap-
tation of Bogor’s state-storage strategy to reduce the time
and memory requirements of analyzing GUIs with a single
event-dispatch thread.

4.1 Modeling GUI Applications in BIR

BIR supports features found in the Java programming
language. In fact, Bogor is being used in the next genera-
tion of the Bandera [5] toolset – a toolset to support model
checking Java programs by providing automated support
for the extraction of safe, compact, finite-state models from
Java source code. While BIR can naturally model Java pro-
grams such as Swing applications, it does not have primi-
tives for non-deterministic choice over, for example, heap
objects as is required by the models described in Section 3.
Therefore, we define BIR extensions to implement those
primitives.

Figure 5 presents the BIR extensions required by BEG.
It declares an extensionChoose which has four new
non-deterministic expressions:
(a) chooseBoolean() to non-deterministically choose
between true and false,
(b) chooseInt(i, j) to non-deterministically choose between
integers in the given rangei andj (inclusive,i < j),
(c) chooseObject<τ>(subTypes, p1,. . . , pn) to non-
deterministically choose heap objects of typeτ (i.e., the
type variable’rec$a is replaced byτ) that satisfy predicates
p1,. . . , pn where subTypesindicates whether it should

6

extension Choose fo r bogor . ex t . ChooseModule {
expdef boolean chooseBoolean () ;
expdef i n t chooseInt (in t , i n t) ;

expdef ’ rec$a chooseObject <’a>(boolean , ’ rec$a −> boolean . . .) ;
expdef ’ rec$a chooseReachableObject <’ rec$a>(boolean , Object , Object −> boolean , ’ rec$a −> boolean . . .) ;

}

fun i s V i s i b l e (Component c) returns boolean = c . v i s i b l e ;
fun isEnabled (Component c) returns boolean = c . enabled ;
fun i s Inv is ib leComponent (Object o) returns boolean = o instanceof Component & & ! i s V i s i b l e ((Component) o) ;

(1) Choose . chooseInt (0 , 3)
(2) Choose . chooseObject<JComponent>(true , i s V i s i b l e , isEnabled)
(3) Choose . chooseReachableObject<JButton >(true , o , is Inv is ib leComponent , i s V i s i b l e , isEnabled)

Figure 5. BIR Extensions: Non-deterministic Choice for BEG

b3 c 1

b2c2b1

 o 3
c

Figure 6. An Example Heap

include sub-types ofτ , and
(d) chooseReachableObject<τ>(subTypes, o, f , p1,. . . ,
pn) to non-deterministically choose heap objects of type
τ that is reachable from objecto without reaching objects
that satisfy the predicatef . BIR supports side-effect free
first-order functions similar to functional programming
languages such as SML that can be supplied for predicates
p1,. . . ,pn andf . For example, the functionisVisible returns
true if the givenjava.awt.Component object is visible.

The BIR expression (1) in Figure 5 non-deterministically
choose either 0, 1, 2, or 3. The BIR expression (2) non-
deterministically choose an instance (i.e., including sub-
types) of javax.swing.JComponent that is both visi-
ble and enabled in the state where the expression is eval-
uated (or, it returns thenull value if there is not any).
The BIR expression (3) non-deterministically choose an
instance ofjavax.swing.JButton that is visible, en-
abled, and reachable through the variableo without go-
ing through invisibleComponent objects. For example,
suppose that we have the Java heap objects illustrated in
Figure 6, wherec1, c2, and c3 are Component s, andb1,
b2, andb3 are JButton s. Suppose thatc3 is not visible,
thus, when executing (3) at that particular state, then it non-
deterministically choose objectsb1 andb2.

Figure 5 only illustrates syntactic extensions of the BIR
language. Analogous to adding a new instruction in an in-
terpreter, we also need to supply the semantics of the new
expressions. In Figure 5, we declare that theChoose exten-
sion is implemented by thebogor.ext.ChooseModule

Java class. Figure 7 illustrates howchooseBoolean is im-

package bogor.ext.ChooseModule
...
public class ChooseModule implements IModule {

...
public IValue chooseBoolean(IExtArguments args) {

IValue[] values = new IValue[] {
vf.newIntValue(0), vf.newIntValue(1) };

int index = ss.advise(..., values,
args.getSchedulingStrategyInfo());

return values[index];
}

}

Figure 7. BIR Extension (excerpts)

plemented using Bogor API; we elided irrelevant code by
using ellipsis.

In general, a BIR expression extension is im-
plemented by a Java method with the same name
(e.g., Choose.chooseBoolean is implemented by
ChooseModule.chooseBoolean). When implementing
non-deterministic choices over values as in the extension
in Figure 5, there are two main steps involved: (1) create
an array of values to choose from, and (2) submit that
array to the scheduler which will pick one to return, and
record information to ensure that all other choices are
subsequently chosen.

For example, the methodchooseBoolean in Fig-
ure 7 creates an array of values consisting of false and
true values which are represented by BIR integer val-
ues 0 and 1, respectively. It creates the values by us-
ing Bogor’s IValueFactory module. Once the array
of choices is created, it uses the scheduler (i.e., the
ISchedulingStrategist module) to pick one of the val-
ues by invoking itsadvise method. The scheduler en-
sures that all values are considered by recording informa-
tion about the choices that have been made thus far in the
scheduling information for the current state (i.e., the object
returned by args.getSchedulingStrategyInfo()).
This allows the schedule to know whether there are remain-
ing values to choose, and if so which one, when all succes-
sors of the current state have been explored. When imple-

7

mentingchooseObject, only the first step differs; it traverses
the heap to collect objects of the appropriate types that sat-
isfy the given predicates to produce the value array. Bo-
gor provides a visitor pattern API to traverse state and heap
structures, thus, it is easy to implement extensions such as
chooseObject andchooseReachableObject. The total code
that we wrote for GUI related extensions was less than 300
lines long using a typical Java code format.

4.2 Exploiting Single Dispatch-Threaded GUIs

Bogor’s architecture is designed to ease customization of
its module to exploit properties of an application domain to
reduce the cost of model checking. We have customized
Bogor to efficiently check the models of GUI applications
generated by the techniques discussed in previous sections.
More specifically, we leverage the fact that the user must
wait for the GUI to respond to one request before they can
input another action.

In contrast to general multi-threaded applications where
interleaving may occur at each state, in models of single
dispatch-threaded GUIs, branching in the state-space occurs
only when choose constructs are used to model user selec-
tions or abstraction of the underlying application. Thus, we
can reduce the number of states stored to those at which
branching may occur and still preserve all user interaction
orderings in the model.

Our solution is to modify the state storage strategy in
Bogor to only store states in which a choose expression is
invoked. The intuition is that those are the earliest points
where we can decide whether the choices cause different
states. There may be cycles in the state-space that are free
of choose expressions, and to avoid non-termination of the
search we must force the storage of states; we adopt the sim-
ple approach of setting a limit on the maximum number of
transitions between each stored state. We implemented the
algorithm described above in Bogor in about 30 LOC. We
present data in the next section that illustrates the reduction
achieved for reasoning about GUI applications.

4.3 Assessing Other Search Strategies

The strategy described above was just one of several
that we explored for reducing the cost of model checking
interaction order models of GUI applications. We imple-
mented state-less search, where no states are stored, how-
ever, this proved innefficient as the number of GUI widgets
grew; each widgets requires a non-deterministic choice in
the model and, consequently, the number of paths grows
exponentially with the number of widgets.

We also considered a technique for reducing the memory
requirements of model checking systems whose state-space
has a cyclic structure [10]. A system isquasi-cyclicif after
projecting the state-space onto a given set of state variables,

one can find cycles. Repeated partial-states are defined by
a predicateΦ, Φ-conforming states define the boundaries of
regions of the state-space. This allows us to divide the state-
space search into a collection of individual searches of the
regions. This technique showed excellent performance for
design models of time-triggered embedded software [10].

GUI applications exhibit a quasi-cyclic structure; the
event-dispatch thread in Swing has a loop that selects
events, looks up their registered handlers, and then invokes
those handlers. We characterized the event-loop header
with a predicate and were able to apply our quasi-cyclic
search. While this did yield a reduction in memory con-
sumption over the unoptimized search, in all cases the re-
duction was less than that of the choose-only state storage
strategy above.

From this experience, we conclude that despite the fact
that sophisticated reduction frameworks may exist in a
model checking toolset, there may still be room for im-
provement. With a flexible model checking framework, in
which alternative strategies can be prototyped and evalu-
ated, one can exploit insights into the structure and behavior
of a class of systems, such as GUI applications, to develop
relatively simple yet dramatically effective reductions.

5 Experience Applying GUI Model Checking
Tools

We have implemented the techniques described in the
preceding sections and applied them to a small collection of
Java Swing GUI applications. These applications, while not
as large as many real applications, contain a representative
collection of Swing components. We are currently applying
our tools to ten Swing applications drawn from the Source-
Forge repository and we hope to report on those in the final
version of the paper. The source code and generated mod-
els for all of the sample applications is available online at
http://beg.projects.cis.ksu.edu .

Figure 1 presents the results of running the applications
on an Opteron 1.8 GHz (32-bit mode) with maximum heap
of 1 Gb using the Java 2 Platform. For each example, we
give the total number ofobjectsallocated during system ex-
ecution (nearly all of which are Swing component and con-
tainer sub-types), the number of non-deterministicchoices
used to model user inputs, and the number of control lo-
cations in the combined model of the Swing library, GUI
implementation and underlying application; due to abstrac-
tion of the underlying application the actual number of lines
of code for an example can be many times larger than the
number of locations.

In all runs, we used all of the reductions and memory-
compression techniques available in Bogor(ALL) and
compared that to the addition of the store-states-on-choose
(SSC)strategy described in Section 4.

8

Example Measure ALL SSC

Button Demo Trans 1920 2045
Objects: 50 States 1816 7
Choices: 3 Space (Mb) 40.2 39.6
Locations: 7563 Time (s) 4 0.8

Voting Dialogs Trans 3114 4630
Objects: 120 States 2930 17
Choices: 4 Space (Mb) 45.5 44.5
Locations: 8269 Time (s) 10 1

Dialog Demo Trans 88493 181512
Objects: 257 States 84439 1033
Choices: 14 Space (Mb) 74.3 47.6
Locations: 8689 Time (s) 512 38

Calculator Trans 29016 35574
Objects: 362 States 27903 105
Choices: 24 Space (Mb) 66.4 48.6
Locations: 8789 Time (s) 183 20

Table 1. Experiment Data

We note that the time to generate the models for these
systems was negligible, except for the manual process
of reading side-effects summaries for Swing methods and
pruning them based on our understanding of their actual be-
havior. We did not keep detailed track of the time required
for this part of the process, but it took several days to fine
tune our model of Swing based on the large and overly ap-
proximate starting model. Fortunately, that process happens
only once and its cost can be amortized across the analysis
of many Java Swing applications.

Our experiments do not demonstrate the benefit of our
approach over simply submitting the Java application to
a tool like JPF, but we note that none of these applica-
tions could be analyzed without some form of abstraction.
The data state of the actual application, Swing component
and container objects and the full-details of application and
Swing method results in enormous state-space explosion.
JPF is itself a very flexible model checking framework and,
in fact, it could in principle process the original Java Swing
applications since it supports full Java libraries including
native methods. We believe that this would be impractical,
but we do plan to implement the SSC strategy in JPF to
compare its performance with our Bogor customization.

The data clearly show the benefit of customizing the
analysis for single dispatch-threaded GUIs; reductions of
more than an order of magnitude in run-time are achieved
for the examples. We note that memory reduction is not as
apparent since these examples are relatively small. We ex-
pect that as GUI implementations scale, especially in terms
of the number of non-modal dialogs, significant memory re-
ductions will be observed.

Finally, this data should be considered thefirst stepin
model checking GUI implementations. We have identi-

fied several additional opportunities for reducing the cost
of model checking interaction orderings. For example, we
are exploring the use of symmetries to collapse interaction
orderings that pop up independent non-modal dialogs in dif-
ferent orders.

6 Related Work

There has been a long line of work on applying for-
mal methods to reason about properties of HCI applica-
tions. Much of this work has focused on analyzing human-
computer interaction orderings that can lead to a mismatch
between the user’s understanding of the state of the system
and the state that is displayed by the computer system. The
best studied of these ordering problems ismode confusionin
aircraft autopilot systems [17, 13]. The analysis in this case
operates on a hand built design or requirements model for
the system. The intent is that once that model has been re-
fined through repeated analysis and modification to be free
of errors, it can be used as the basis for synthesizing GUI
control logic.

Several researchers [15, 3, 2] have followed up on this
idea to develop general methods for specifying the interac-
tion behavior of user-interface systems, supporting the anal-
ysis of interaction specifications with model checking and
other behavioral analyses, and synthesizing parts of GUI
implementations. The benefits of starting with a high-level
specification of interaction behavior is clear : it obviates
the need for sophisticated model extraction techniques. Un-
fortunately, the synthesis techniques developed to date do
not allow for the generation of fully-functional GUI imple-
mentations of the kind that are required in deployed HCI
systems. Our work is an attempt to bridge this gap, by de-
veloping model extraction techniques that identify and pre-
serve the semantics of the portions of the code that encode
interaction behavior, while abstracting the rest of an appli-
cation to enable tractable checking.

There has been relatively little work attempting to for-
mally model and reason about GUI implementations. A no-
table exception is Chen’s formal model of event-handling in
Java GUIs [4] which effectively sets the stage for work such
as ours. Our previous work considered GUI implementa-
tions in the VisualBasicTM framework [8]. There we man-
ually developed models for the framework, event-handler
code and the application and used the SMV [14] model
checker to reason about interaction ordering properties ex-
pressed as bounded safety properties in computation-tree
logic. The work presented in this paper is the scaling and
automation of our manual model extraction approach to
treat Java SwingTMGUI applications.

Furthermore, we exploit the flexibility of the Bogor
model checking framework to implement optimizations to
the state-space search algorithm that exploit the structure
of GUI applications. Our approach is similar to the work

9

of Behrmann et. al. [1] which explores the use of sev-
eral heuristics to avoid state storage. They note that their
heuristics do not work well in combination with depth-first
search (DFS) algorithms. Our state-storage heuristic does
work well with Bogor’s basic DFS due to the fact that we
can syntactically identify the points at which states should
be stored.

7 Conclusions

A critical element of human-computer interaction is the
control-logic that guides and restricts the set of user actions
that can be executed at each system state. In modern Java
Swing GUI implementations, this control-logic is spread
across Swing framework class instances and user-defined
event-handler methods. We have developed a static anal-
ysis framework thatextractsthat control-logic from Java
source code and thereby enables exhaustive analysis of the
behavior of a GUI implementation with respect to interac-
tion ordering properties. Furthermore, understanding struc-
tural and behavioral properties of Swing GUIs has led to
insight that has enabled domain-specific optimization of the
analyses and the promise of further optimization. We have
experimented with this analysis and our initial results are
encouraging in both scaling to treat the features found in
real Swing GUIs and in mitigating the potentially explosive
growth of analysis cost. We are engaged in further study
and experimentation aimed at understanding the range of
correctness properties and the size of GUI applications for
which this analysis approach will be cost-effective.

8 Acknowledgments

The authors would like to thank the members of the San-
tos group at Kansas State University for many useful dis-
cussions about issues related to this paper.

The research reported in this paper was supported in part
by the U.S. Army Research Office (DAAD190110564), by
DARPA/IXO’s PCES program (AFRL Contract F33615-
00-C-3044), by NSF (CCR-0306607) by Lockheed Martin,
by Rockwell-Collins, and by an IBM Corporation Eclipse
Award.

References

[1] G. Behrmann, K. G. Larsen, and R. Pelanek. To store or not to store.
In Computer Aided Verification, pages 433–445, Sept. 2003.

[2] J. Berstel, S. C. Reghizzi, G. Roussel, and P. San Pietro. A scalable
formal method for design and automatic checking of user interfaces.
In Proceedings of the 23rd international conference on Software en-
gineering, pages 453–462, 2001.

[3] J. Campos and M. Harrison. Model checking interactor specifica-
tions. Automated Software Engineering, 3(8):275–310, Aug. 2001.

[4] J. Chen. Formal modelling of Java GUI event handling. InFormal
Methods and Software Engineering : 4th International Conference
on Formal Engineering Methods, Oct. 2002.

[5] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păs̆areanu,
Robby, and H. Zheng. Bandera : Extracting finite-state models from
Java source code. InProceedings of the 22nd International Confer-
ence on Software Engineering, June 2000.

[6] X. Deng, M. B. Dwyer, J. Hatcliff, G. Jung, and Robby. Model-
checking middleware-based event-driven real-time embedded soft-
ware. InProceedings of the 1st International Symposium on Formal
Methods for Components and Objects, Nov. 2002.

[7] M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifi-
cations for finite-state verification. InProceedings of the 21st Inter-
national Conference on Software Engineering, May 1999.

[8] M. B. Dwyer, V. Carr, and L. Hines. Model checking graphical user
interfaces using abstractions. InProceedings of the 6th European
Software Engineering Conference held jointly with the 5th ACM SIG-
SOFT Symposium on the Foundations of Software Engineering, vol-
ume 1301 ofLecture Notes in Computer Science, pages 244–261.
Springer-Verlag, Sept. 1997.

[9] M. B. Dwyer, J. Hatcliff, V. Ranganath, and Robby. Exploiting object
escape and locking information in partial order reduction for concur-
rent object-oriented programs.Formal Methods in System Design,
2004. (to appear).

[10] M. B. Dwyer, Robby, X. Deng, and J. Hatcliff. Space reductions
for model checking quasi-cyclic systems. InProceedings of the 3rd
International Conference on Embedded Software, Oct. 2003.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns.
Addison-Wesley Pub. Co., Jan. 1995.

[12] G. Holzmann. The model checker SPIN.IEEE Transactions on
Software Engineering, 23(5):279–294, May 1997.

[13] G. Lüttgen and V. Carrẽno. Analyzing mode confusion via model
checking. In D. Dams, R. Gerth, S. Leue, and M. Massink, editors,
Theoretical and Practical Aspects of SPIN Model Checking (SPIN
’99), volume 1680 ofLecture Notes in Computer Science, pages 120–
135, Toulouse, France, September 1999. Springer-Verlag.

[14] K. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993.

[15] F. Paterno and C. Santoro. Integrating model checking and HCI
tools to help designers verify user interface properties. InInteractive
Systems - Design, Specification, and Verification : 7th International
Workshop, June 2003.

[16] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and
highly-modular model checking framework. InProceedings of the
9th European Software Engineering Conference held jointly with the
11th ACM SIGSOFT Symposium on the Foundations of Software En-
gineering, 2003.

[17] J. Rushby. Using model checking to help discover mode confusions
and other automation surprises. In D. Javaux, editor,Proceedings of
the 3rd Workshop on Human Error, Safety, and System Development
(HESSD’99), June 1999.

[18] O. Tkachuk and M. B. Dwyer. Adapting side effects analysis for
modular program model checking. InProceedings of the 9th Eu-
ropean software engineering conference held jointly with 10th ACM
SIGSOFT international symposium on Foundations of software engi-
neering, pages 188–197. ACM Press, 2003.

[19] O. Tkachuk, M. B. Dwyer, and C. S. Păs̆areanu. Automated envi-
ronment generation for software model checking. InProceedings
of the 18th IEEE International Conference on Automated Software
Engineering, Oct. 2003.

[20] W. Visser, G. Brat, K. Havelund, and S. Park. Model checking pro-
grams. InProceedings of the 15th IEEE International Conference on
Automated Software Engineering, Sept. 2000.

10

